Saudi Water Academy
Connecting Waterpeople
Autodesk Water Webinar Series - April 30th, 10h (UTC+1)

You are here

Unexpected energy storage capability where water meets metal surfaces

  • Unexpected energy storage capability where water meets metal surfaces
    Dr. Mahnaz Azimzadeh Sani and Dr. Julia Linnemann (from right) are part of the team that found unexpectedly high electrochemical capacities on individual gold and platinum nanoparticles. Credit: RUB, Kramer

About the entity

Ruhr Universität Bochum
Located in the heart of Europe in the dynamic metropolitan region of the Ruhrgebiet, RUB with its 20 faculties is home to over 43,000 students from over 130 countries.

Although interfaces between metals and water are the local areas where crucial processes of energy technologies such as water splitting occur, comparably little is known about their structure and changes during such processes. For more than 100 years, the scientific description of such interfaces has been based on the model of the so-called electrochemical double layer. It states that charge carriers in an aqueous solution are increasingly arranged in the boundary region to the metal, to compensate for excess electrical charges on the metal side. In the process, the opposing charges are separated by water molecules. Similar to a standard plate capacitor, this nanoscopic charge separation in the interface allows energy to be stored and released later. Processes in which the molecular structure of the electrochemical double layer changes are relevant to many green technologies, such as supercapacitors and fuel cells.

Thousands of times smaller than the diameter of a human hair

Nanoparticles, which are thousands of times smaller than the diameter of a human hair, are investigated for such technical applications. Due to their advantageous ratio of process-relevant surface area to volume, they offer particularly good conditions for this. "In order to track down the capacitance and the rearrangement processes in the electrochemical double layer on platinum and gold nanoparticles, it was crucial to develop a method with which precise discharge currents can be measured on individual nanoparticles in solution," reports Kristina Tschulik. Otherwise, it would not be possible to distinguish effects related to the electrochemical double layer from effects caused by the interaction of neighboring nanoparticles, since billions of them are present on a conventional electrode.

The Iranian scientist Dr. Mahnaz Azimzadeh Sani, who was funded by the German Academic Exchange Service (DAAD), used so-called colloidal nanoparticle dispersions. There, nanoparticles are separated from each other and finely dispersed in aqueous solution, randomly striking a biased microelectrode every now and then. With the help of computer-aided molecular dynamics simulations, on which researchers from the RUB and the Université Paris-Saclay and Sorbonne Université in Paris worked, it was possible to interpret similarities and differences in voltage-dependent measured capacitive currents of different types of nanoparticle dispersions. The measured unexpectedly high capacitances, are attributed to the increased accumulate of dissolved ions in regions between a compact water layer bound to platinum (and less trongl to gold) and an adjacent water layer of a different arrangement. "Furthermore, water molecules are detached from the metal surface when more negative voltage is applied," explains Dr. Julia Linnemann, team leader at Tschulik's chair. In the future, the RUB scientists want to find out whether and why the double layer structure is different on large electrodes consisting of many nanoparticles, in order to make the findings usable for commercial applications.

Subscribe to our newsletter

Topics of interest

The data provided will be treated by iAgua Conocimiento, SL for the purpose of sending emails with updated information and occasionally on products and / or services of interest. For this we need you to check the following box to grant your consent. Remember that at any time you can exercise your rights of access, rectification and elimination of this data. You can consult all the additional and detailed information about Data Protection.