Smart Water Magazine
Connecting Waterpeople

You are here

Leonardo da Vinci’s paradox cracked

  • Leonardo da Vinci’s paradox cracked
    Credit: Universidad de Sevilla
  • Researchers from the universities of Seville and Bristol have resolved this mystery regarding the instability of the trajectory of an air bubble rising in water´.

About the entity

University of Seville
The University of Seville (Universidad de Sevilla) is a university in Seville, Spain.

Prof. Miguel Ángel Herrada, from the University of Seville, and Prof. Jens G. Eggers, from the University of Bristol, have discovered a mechanism to explain the unstable movement of bubbles rising in water. According to the researchers, the results, which are published in the prestigious journal PNAS, may be useful to understand the motion of particles whose behaviour is intermediate between a solid and a gas.

Leonardo da Vinci observed five centuries ago that air bubbles, if large enough, periodically deviate in a zigzag or spiral from straight-line movement. However, no quantitative description of the phenomenon or physical mechanism to explain this periodic motion had ever been found.

The authors of this new paper have developed a numerical discretisation technique to characterise precisely the bubble’s air-water interface, which enables them to simulate its motion and explore its stability. Their simulations closely match high-precision measurements of unsteady bubble motion and show that bubbles deviate from a straight trajectory in water when their spherical radius exceeds 0.926 millimetres, a result within 2% of experimental values obtained with ultrapure water in the 90s.

The researchers propose a mechanism for the instability of the bubble trajectory whereby periodic tilting of the bubble changes its curvature, thus affecting the upward velocity and causing a wobble in the bubble’s trajectory, tilting up the side of the bubble whose curvature has increased. Then, as the fluid moves faster and the fluid pressure falls around the high-curvature surface, the pressure imbalance returns the bubble to its original position, restarting the periodic cycle.

Subscribe to our newsletter

Topics of interest

The data provided will be treated by iAgua Conocimiento, SL for the purpose of sending emails with updated information and occasionally on products and / or services of interest. For this we need you to check the following box to grant your consent. Remember that at any time you can exercise your rights of access, rectification and elimination of this data. You can consult all the additional and detailed information about Data Protection.