Connecting Waterpeople

You are here

Scientists predict high groundwater depletion risk in South Korea by 2080

  • Scientists predict high groundwater depletion risk in South Korea by 2080

About the entity

Postech - Pohang University of Science and Technology
POSTECH is Korea’s first research university, established in a period when Korea was still chasing after advanced technologies of developed nations. It was founded on the belief that Korea needed a university that can spearhead the global science.

Groundwater forms when precipitation such as rain and snow seeps into the soil, replenishing rivers and lakes. This resource supplies drinking water. However, a recent study has alarmed the scientific community by predicting that approximately three million people in currently untapped areas of Korea could face groundwater depletion by 2080.

A research team, led by Professor Jonghun Kam from Division of Environmental Science and Engineering and Dr. Chang-Kyun Park from the Institute of Environmental and Energy Technology (currently working for LG Energy Solution) at Pohang University of Science and Technology (POSTECH), used an advanced statistical method, to analyze surface and deep groundwater level data from 2009 to 2020, revealing critical spatiotemporal patterns in groundwater levels. Their findings were published in the journal Science of the Total Environment.

Groundwater is crucial for ecosystems and socioeconomic development, particularly in mountainous regions where water systems are limited. However, recent social and economic activities along with urban development have led to significant groundwater overuse.

Additionally, rising land temperatures are altering regional water flows and supplies, necessitating water policies that consider both natural and human impacts to effectively address climate change.

In a recent study, researchers used an advanced statistical method called "cyclostationary empirical orthogonal function analysis (CSEOF)" to analyze water level data from nearly 200 surface and deep groundwater stations in the southern Korean Peninsula from 2009 to 2020. This analysis helped them identify important spatiotemporal patterns in groundwater levels.

The researchers projected that if this decline in deep groundwater continues, at least three million people in untapped or newly developed areas, primarily in the southwestern part of the peninsula, could face unprecedented groundwater levels as a new normal by 2080.

The first and second principal components revealed that water level patterns mirrored recurring seasonal changes and droughts. While shallow-level groundwater is more sensitive to the seasonality of precipitation than the drought occurrence, deep-level groundwater is more sensitive to the drought occurrence than seasonality of precipitation. This indicates that both shallow-level and deep-level groundwater are crucial for meeting community water needs and mitigating drought effects.

The third principal component highlighted a decline in groundwater levels in the western Korean Peninsula since 2009. The researchers projected that if this decline in deep groundwater continues, at least three million people in untapped or newly developed areas, primarily in the southwestern part of the peninsula, could face unprecedented groundwater levels as a new normal (defined as groundwater depletion) by 2080.

If the research team's predictions are correct, the impact would be particularly severe in drought-prone, untapped areas where groundwater is heavily relied upon.

Professor Jonghun Kam of POSTECH stated, "By leveraging long-term, multi-layer groundwater level data on Korea and advanced statistical techniques, we successfully analyzed the changing patterns of deep- and shallow-level groundwater levels and predicted the risk of groundwater depletion."

"An integrated national development plan is essential, one that considers not only regional development plans but also balanced water resource management plans."

Subscribe to our newsletter

Topics of interest

The data provided will be treated by iAgua Conocimiento, SL for the purpose of sending emails with updated information and occasionally on products and / or services of interest. For this we need you to check the following box to grant your consent. Remember that at any time you can exercise your rights of access, rectification and elimination of this data. You can consult all the additional and detailed information about Data Protection.